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1. Introduction

In this study the extension of a telescopic structure is determined using an estimate of the
spectrum of the structure. As an example a hydraulic cylinder is chosen. The hydraulic cylinder is
a nonlinear structure with damping. This makes it difficult to formulate an analytical model for
this structure. In this note it is assumed that the damping of the cylinder is low enough to use a
sinusoid estimation algorithm to obtain an estimate of its spectrum. The aim of this study is to
determine the extension of the cylinder from the natural frequencies of the structure. In other
words a relation between the natural frequencies and the extension of the cylinder real time is
investigated. Such a relation could be used for control purposes.
Two different methods to estimate the natural frequencies of the cylinder are used. The first

method is based on Capon–Geronimus algorithm presented in Refs. [1,2,8–10]. The second
method uses stochastic techniques along with the Kalman–Ho algorithm to estimate the
eigenvalue of a certain matrix. These eigenvalues correspond to the natural frequencies of the
cylinder. Both of these methods yield very close results. In certain situations, the methods used in
this note yield a more accurate estimate of the natural frequencies than a widely used fast Fourier
transform(FFT) analyzer.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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2. The experiment

A hydraulic cylinder is used for the experimental analysis. The aim of the study is to detect
changes in the shape of a structure. In this note two different statistical methods are used to
determine the length of a hydraulic cylinder. A hydraulic cylinder is chosen because one can easily
change its length. Moreover, it is nonlinear and thus there are no easy methods to model the
cylinder. Finally, a hydraulic cylinder is a real-life structure on which it is relatively easy to collect
data. The length of the cylinder is determined from the point spectrum of the system.
Free boundary conditions are used on both ends of the cylinder. In other words the cylinder is

suspended using soft elastic cords, i.e. bungee cords. The cylinder is connected to a hydraulic
pump so that the extension of the cylinder can be changed during the experiment. The hydraulic
hoses are kept connected at all times. In this case the effect of vibrations induced by the hydraulic
pump is also taken into account. It is noted that the power spectrum of the hydraulic pump is very
small for the frequency range of interest. The signals of interest we will discuss later are two orders
of magnitude higher than the noise shown in Fig. 1. In other words the natural frequency of the
pump do not interfere with the experimental analysis.
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Fig. 1. Spectrum of the hydraulic bench, arbitrary unit.
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To excite the cylinder a piezoelectric stack is used. A piezoelectric stack is light weight and can
be easily integrated into the structure. Since a piezoelectric stack delivers higher force under
compression, it is squeezed between two small metal blocks welded to the rod; see Fig. 2. This
configuration does not add too much weight to the system. Using a piezoelectric stack has also the
advantage of being a stand alone system. For example a shaker needs to be fixed to the ground or
supported appropriately to obtain a reliable excitation, whereas the piezoelectric stack is attached
directly to the system. Furthermore, it is easier to isolate the direction of excitation when using a
piezoelectric stack. Because the stack is a small device it is portable and suitable for real-life
applications.
A piezoelectric stack is used to excite the cylinder from the end of the rod. Previous tests

showed that the first mode is best measured at the end of the rod. The cylinder is excited using
white noise. Here white noise means that the spectrum of the input is constant over the frequency
range of interest.
Previous testing showed that the first natural frequency of the cylinder is well separated from

the second and the third natural frequencies; see Fig. 3. The second and the third natural
frequencies are changing between 650 and 1200Hz as the rod moves through its full range of
extension. At around 40% extension, the second and third natural frequencies tend to overlap.
This makes it difficult to track a certain mode. On the other hand, the first natural frequency
changes between 150 and 400Hz so it is always well separated from the second and the third
Fig. 2. The piezoelectric actuator and the cylinder.
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Fig. 3. Natural frequencies of the cylinder at different rod extensions. The circle, rectangle, and triangle correspond to

the first, the second and the third modes. Hollow markings indicate retraction and full markings indicate extension of

the cylinder (data from F.M. Monroig).
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modes. Hence, the first natural frequency of the cylinder is monitored to determine the extension
of the cylinder.
The piezoelectric stack is excited with white noise, then the acceleration data is collected at the

end of the rod. To analyze this data two different statistical techniques are used. First, the
Capon–Geronimus method is used. In this method one obtains an estimate of the spectrum
directly from the acceleration data. This estimate is used to determine the natural frequencies of
the system; see Section 2.1.
The second method used is based on combining some statistical methods with the Kalman–Ho

algorithm to obtain a reduced order model of the system; see Section 2.2. Then this model is
employed to calculate the natural frequencies of the system.

2.1. Capon–Geronimus method

In this section a sketch of Capon–Geronimus algorithm is presented which is used to compute
the natural frequencies of the cylinder. For more detailed discussion of this topic; see Refs. [1–3].
To apply this method the acceleration data is modeled as a wide sense stationary signal of the form

yðnÞ ¼
Xn

k¼1

ake
iðoknþfkÞ þ zðnÞ; (1)
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where n is some positive integer and fokg
n
1 are the sinusoid frequencies of the cylinder with

corresponding weights fakg
n
1: Moreover, ffkg

n
1 are mutually independent uniformly distributed

random variables over ½0; 2p�: Finally, zðnÞ is additive stationary measurement noise. The aim is to
estimate the frequencies ok to determine the natural frequencies of the system.
To apply the Capon–Geronimus method the response of the cylinder is modelled as a sinusoidal

wide sense stationary process of the form

bðnÞ ¼
Xn

k¼1

ake
iðoknþfkÞ:

In this model ok=g is the natural frequency of the cylinder where g is the sampling rate. Moreover,
fakg

n
1 are the amplitude at the corresponding natural frequency fok=ggn1: Furthermore, the fk are

independent uniformly distributed random variables over ½0; 2p�: In this case bðnÞ is a wide sense
stationary process. In this model bðnÞ is a real signal because the sinusoid frequencies come in
complex conjugate pairs.
To implement the Capon–Geronimus method the data is collected with an accelerometer.

Moreover, it is assumed that this data is corrupted by additive noise zðnÞ: To be precise yðnÞ ¼
bðnÞ þ zðnÞ; where zðnÞ is purely nondeterministic wide sense stationary process, independent of
bðnÞ: For example zðnÞ could be white noise. In Capon–Geronimus method one does not need to
know any statistical information about zðnÞ: This method will obtain the natural frequencies and
amplitudes without any prior knowledge of zðnÞ: The Capon–Geronimus method provides an
algorithm to extract the spectrum of bðnÞ from yðnÞ: That is, the algorithm yields the point
spectrum of yðnÞ which has magnitude ak at the sinusoid frequencies and zero everywhere else. So
when applying the Capon–Geronimus method for estimating the natural frequencies the peaks in
the graphs indicate the natural frequencies.
Now the implementation of the Capon–Geronimus algorithm will be explained. Recall that

yðnÞ ¼ bðnÞ þ zðnÞ is the data collected from the experiment. One uses standard correlation
techniques to compute the autocorrelation matrix associated with the data. Let Tm be the m 	 m

Toeplitz matrix corresponding to the data. To be precise the entries of Tm are given by

ðTmÞi;j ¼ EðyðiÞyðjÞÞ;

where E denotes the expectation of a random variable. In this method one uses the Levinson
polynomials to estimate the spectrum of the process. Notice that Tk is the upper left k 	 k corner
of Tm for kpm: Then the Levinson system is given by

½ak;1ak;2 
 
 
 ak;k�1ak;k�Tk ¼ ½0 0 
 
 
 0 �k�; (2)

where the scalars fak;jg
k
j¼1 are the Levinson coefficients and �k is the estimation error. Set ak;k ¼ 1

for all k. These coefficients can be obtained using the levinson command in Matlab. Define the
polynomials pkðoÞ ¼

Pk
j¼1 akje

�koðj�1Þ=
ffiffiffiffi
�k

p
: In this case the estimate of the spectrum mmðoÞ of

fyðnÞg11 is given by

mmðoÞ ¼
1Pm

k¼1 jpkðoÞj
2
:

One can combine the Levinson algorithm with standard FFT techniques to evaluate jpkðoÞj
2

around the unit circle. The estimate of the point spectrum mmðoÞ is calculated for different values
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of m and plotted in a graph. In such a plot the curves converge to zero at all frequencies except the
sinusoid frequencies. At sinusoid frequencies mmðoÞ converges to the corresponding amplitudes of
the sinusoids as m tends to infinity. In other words,

lim
m!1

mmðoÞ ¼
jakj

2 for o ¼ ok; 1XkXn;

0 otherwise:

(
(3)

The natural frequencies of the system are determined from the peaks in the plot of mmðoÞ vs. o:
Recall that during the experimental work the acceleration data is collected by exciting the

cylinder by a piezoelectric stack with white noise. To have real-time measurements a dSPACE
digital signal processor is used. A simple Simulink program generates random noise. To
concentrate the energy of this noise to lower frequencies a sixth-order low-pass Butterworth filter
is used with corner frequency at 400Hz in the Simulink program.
The hydraulic cylinder is retracted slowly starting from the totally extended position to the fully

retracted position in a continuous manner. It takes approximately 85 s for the cylinder to be fully
retracted. A Matlab code excites the cylinder, collects data, and then waits 2 s to excite the system
again. This way we have estimates of the spectrum of the cylinder at different extensions. The
length of the rod is measured using a ruler drawn on the rod.
The acceleration data collected is passed through an anti-aliasing filter with a corner frequency

at 1 kHz. The output of the filter is amplified before feeding into the digital processor. At this
point now one has yðnÞ ¼ bðnÞ þ zðnÞ: The spectrum estimate of the signal is then calculated using
the Capon–Geronimus algorithm on yðnÞ: To have reliable results the experiments are repeated
ten times, that is the rod is retracted from full extension to retracted position ten times. The
estimates of the spectrum at different extension lengths for these ten experiments are plotted in
Fig. 4. In this figure the graph closest to the frequency axis corresponds to the fully extended
position. The peaks obtained in different experiments are consistent; see also Fig. 5. As the piston
is retracted the first natural frequency of the structure shifts right as expected.
In the Capon–Geronimus method the sinusoid frequencies are computed where the estimate of

the spectrum converges to a finite value. In this example the spectrum is estimated only once and
the highest peak is used as an indication of natural frequency. In the frequency range 0–400Hz
there is only one natural frequency. Hence the highest peak is used to determine the first natural
frequency of the system.
2.2. Kalman–Ho algorithm

In this section some state-space statistical methods are used with the Kalman–Ho algorithm to
estimate the natural frequencies of the cylinder; see Refs. [4,5]. The Kalman–Ho algorithm uses
the impulse response of the system to generate a state-space model. However, in this example the
system is excited with white noise. In this case one can use the autocorrelation sequence of the
acceleration data as an input to the Kalman–Ho algorithm. From this the natural frequencies of
the system are obtained. To this end assume that the cylinder can be modeled as a discrete time
linear system of the form

xðn þ 1Þ ¼ AxðnÞ þ BuðnÞ and yðnÞ ¼ CxðnÞ; (4)
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Fig. 4. Estimate of the spectrum at different locations when the piston is extending. The unit is the same as in Fig. 1.
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where A is an operator on some finite-dimensional space Cm; the operator B takes C into Cm; and
C maps Cm into C: In this model the eigenvalues of A correspond to the natural frequencies of the
cylinder, that is the natural frequencies of the cylinder are given by

on ¼
1

2pg
logðldÞ: (5)

Here ld are the eigenvalues of A and on are the natural frequencies of the system. The constant g
is the sampling rate of the digital processor in seconds.
In the experiments the input uðnÞ is white noise and the output yðnÞ is the acceleration data. It is

well known that the model (4) driven by white noise produces a steady-state wide sense stationary
random process. The autocorrelation function for this random process is given by

RyðnÞ ¼
CAnPC�; nX0;

CPA�jnjC�; np0:

�
(6)

Here P is the controllability Grammian, that is

P ¼ APA� þ BB�:

For more details; see Refs. [6,7].



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40
100

150

200

250

300

350

400

cm.

H
z.

Fig. 5. Change of first natural frequency vs. time while the cylinder is retracting. The solid line, square markings and *

correspond to the result of experiments with the FFT analyzer, Capon’s method and the Kalman–Ho algorithm.
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Now the problem of obtaining the natural frequencies from the data yðnÞ is equivalent to
finding the eigenvalues of A given the sequence fCAnPC�g1n¼0: It is well known that one can apply
the Kalman–Ho algorithm to find the matrix A up to a similarity transformation from any
sequence of the form fCAnQg1n¼0: In particular with Q ¼ PC� one can use the Kalman–Ho
algorithm to find A up to the similarity transformation from the correlation data RyðnÞ ¼

CAnPC�: Then using Eq. (5) the eigenvalues of this A yield the natural frequencies for the
cylinder.
To find the natural frequencies of the system the following experimental procedure is used. First

the acceleration data is collected. Then the autocorrelation sequence is formed from the data. At
this point the Kalman–Ho algorithm is applied on the autocorrelation sequence to find the
eigenvalues of A. Finally, the natural frequencies of the system are computed using Eq. (5).
Since the system is assumed to have low damping, the imaginary parts of the eigenvalues of the

continuous system are the natural frequencies of the system. In Fig. 5 the results from
Kalman–Ho and the locations of the peaks from the Capon–Geronimus method are plotted. The
percent difference between the results of the two methods is around 6% for all locations. The
experimental setup is illustrated in Fig. 6.
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Because the cylinder is a complicated structure which involves seals, hydraulic oil, a barrel and
a rod the experimental results found in this note are compared with the results of a widely used
experimental method instead of an analytical model. The results are checked using a commercially
available FFT analyzer. The frequency response function calculated by the FFT analyzer is used
to find the natural frequencies of the system. The commercially available analyzer uses the ratio of
the spectrum of the input and the output to find the frequency response function. Using an impact
hammer the cylinder is excited from the tip of the rod. The accelerometer is also placed at the tip
of the rod. The rod is retracted from the fully extended position to the fully retracted position by
steps of 2 cm. A frequency response function is calculated at each point. The natural frequencies
of the cylinder at an extension is obtained by determining the frequency where the peaks occur. To
compare the results obtained from Kalman–Ho algorithm and the results from the FFT analyzer
the natural frequency versus extension graph is plotted in Fig. 5. The results obtained using
Kalman–Ho algorithm are close to the one obtained using the commercial FFT analyzer. The
percent error between the two results is less than 10%. Notice that the results obtained using
Capon–Geronimus and Kalman–Ho algorithms are more consistent with each other than the
results picked up by the FFT analyzer. Recall that the percent error between the Kalman–Ho and
Capon–Geronimus methods was less than 6% for any location. Therefore, one can use the natural
frequencies found in real-time using the digital processor together with the Kalman–Ho or
Capon–Geronimus method to determine the extension of the cylinder with the help of Fig. 5.
3. Conclusion

The results of the experiments showed that using both the Capon–Geronimus method and the
statistical method of Section 2.2 one could detect the length of the cylinder under test using Fig. 5
accurately. The estimates using Capon–Geronimus and Kalman–Ho algorithms are more
consistent with each other when compared to the results from the FFT analyzer. Finally, in many
situations our methods agree with the FFT analysis. Because the statistical methods we use are
better suited to handle random data, we believe our results are more accurate than the FFT
analyzer in certain cases.
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